Show simple item record

dc.contributor.authorWanjala, Victor
dc.contributor.authorObiero, Beatrice Adhiambo
dc.date.accessioned2023-02-15T07:53:36Z
dc.date.available2023-02-15T07:53:36Z
dc.date.issued2022-12
dc.identifier.citationVICTOR, W., & ADHIAMBO, B. O. (2022). On Skew Class (BQ) Operators.en_US
dc.identifier.issnISSN: 2456-8880
dc.identifier.urihttp://repository.rongovarsity.ac.ke/handle/123456789/2465
dc.description.abstractThe class of Skew (BQ) operators acting complex Hilbert on an separable H is introduced in this paper. An operator if K ∈L (H) is said to belong to class Skew (BQ) if K commutes with a (BQ) operator, that is, [K∗2K2 (K∗K) 2] K = K [(K∗K) 2 K∗2K2]. We explore some properties that this class is enriched with. We then scan the relation of this class to other classes and then oversimplify it to the class of Skew (nBQ).en_US
dc.language.isoenen_US
dc.publisherIconic Research and Engineering Journalsen_US
dc.relation.ispartofseriesVolume 6;Issue 2
dc.subjectIndexed Terms- Skew-Normal, Skew-Binormal operators, (BQ) operators, Skew-(BQ) Operatorsen_US
dc.titleOn Skew Class (BQ) Operatorsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record