Diversity of Sorghum (Sorghum bicolor L. Moench) Germplasm from Tanzania

 $\begin{array}{lll} \mbox{Ringo J.H.}^{1*} & \mbox{Mneney E. E} \ ^1 & \mbox{Onkware A.O}^2 & \mbox{Owuoche J. O}^3 & \mbox{Were B.A}^2 \\ & \mbox{Too E.J}^2 & \mbox{Gudu S.O}^4 \end{array}$

Mikocheni Agricultural Research Institute, P.O. Box 6226, Tanzania
Department of Biological Sciences, University of Eldoret, P.O. Box 1125-30100, Kenya
Bepartment of Crop Science, Egerton University, P.O. Box 536, Kenya.
4.Rongo University College, P.O.Box 103 – 40404, Kenya
* Corresponding author: ringojustinh@yahoo.com

Acknowledgements: This work was financially supported by the Swedish International Development Agency (SIDA/SAREC) through the BIO-EARN project. Materials used in this research were kindly provided by ICRISAT.

Abstract

Sorghum (*Sorghum bicolor* L. Moench) is an important cereal crop cultivated in varied agro-ecological zones of Tanzania ranging from the southern highlands to coastal lowlands. Different cultivars and varieties of sorghum are needed for cultivation in such varied zones. Phenotypic properties of Tanzanian sorghums are not well-studied. Objective of this study was to phenotype some sorghum germplasm from Tanzania using morphological markers to establish their diversity for future use in breeding programs. Ninety-eight sorghum genotypes were evaluated at Bumala and Amagoro in Western Kenya during 2009 and 2010 seasons in a randomized complete block design. The International Plant Genetic Resource Centre descriptors of 1993 were used for data collection. Accession MCSR T29 was the earliest which took only 64 days while MCSR T80 was the latest taking 86 days to attain 50% flowering compared to the overall mean of 71 days. The MCSR T71 was the best yielder (114.6 g/ panicle) and MCSR T10 was the lowest (10.3 g/panicle) compared to overall mean of 92.4g/panicle. About 60% of the sorghums had brown and only 2.2% had black grains. MCSR T90 had bold grains with 1000 seed weight of 55.2g. Leaves per plant ranged from 7 in MCSR T69 to 17 in MCSR T25. Plant height ranged from 72.8 cm in MCSR T53 to 434.6 cm in MCSR T80. This study showed that, Tanzanian sorghums are diverse therefore could be used in future breeding programs for developing multipurpose and adapted cultivars. **Keywords:** Cultivars, Diversity, Phenotype, Varieties, Sorghum

1. Introduction

Sorghum (Sorghum bicolor L. Moench) is one of the most important drought tolerant cereals grown in arid and semi-arid parts of Africa (Abdulai et al., 2012). This crop contribute to food security and contain high calorie content, and also provides metallic nutrients, particularly iron and zinc, which also makes it competitive with maize (Koenders, 2010). In spite of its importance, sorghum yield in East Africa is low (<1t ha⁻¹) mainly because of the traditional farming practices characterized by use of low yielding cultivars and landraces that are susceptible to the biotic and abiotic stresses. Climate change models indicate that many parts of Africa shall experience reduced and erratic rainfall as the temperatures increase (Rowhani et al., 2011). Therefore, the importance of drought tolerant cereals, especially sorghum is likely to increase in the continent. Furthermore, the emerging market for sorghum in the brewing industry will create high demand especially for the white varieties. Deployment of adapted sorghum cultivars can significantly increase yields in sorghum growing areas (House et al., 1997), including the dry and sub-humid agroecologies of East Africa. The disparity of the agroecologies in which sorghum is cultivated in semi arid region indicates that there could be significant genetic differences among the sorghum landraces that can be exploited in sorghum improvement. Phenotyping these differences and use the knowledge in breeding to fill the current yields and stress tolerance gaps. Identification and documentation of agronomic traits in sorghum genotypes is important because such information facilitate conservation process and also use in agriculture. Plant characterization has been done mostly on morphological or agronomic descriptors because they do not depend upon expensive, sophisticated equipment (Mace et al., 2005). Morphological traits are reliable and easy to study at relatively low cost and characterization is of great importance to breeders as it provide necessary information for selection and breeding purposes. Rao et al. (1998) employed agronomic characters of 152 sorghum genotypes from Rwanda and ICRISAT and showed significant variability in sorghum genotypes. Amsalu and Endashaw (2000) also used morphological characters to determine the genetic variations of 415 sorghum genotypes from Ethiopia and Eritrea. Using similar approach, Sallu (2007) reported wide genetic variations among sorghum collections in Tanzania gene bank. Warkad et al. (2008) reported significant variations in sorghum yield and yield components particularly plant height, number of leaves, days to 50% flowering days to maturity, dry fodder weight, panicle length and width, and 1000 seed weight. Kolberg (1999) reported substantial morphological variations for agronomic traits in 124 sorghum genotypes from Namibia. The aim of this study was to evaluate 98 sorghum genotypes from Tanzania for morphological characteristics hence facilitate selection and breeding for adapted cultivars.

2. Materials and Methods

2.1 Description of Experimental Sites

The experiments were conducted in Bumala ($0^{\circ} 25^{\circ}$ N and $33^{\circ} 54^{\circ}$ E) and Amagoro $0^{\circ}37'30''$ N and $34^{\circ}19'37''$ E in Western Kenya. Bumala is found at an altitude altitude 1175m asl whereas Amagoro is at 1208m asl (Jaectzold and Schmidt, 1983). Bumala receives mean annual rainfall of 800-1600 mm and the temperature ranges from 26° C to 30° C while at Amagoro, the annual rainfall is <800mm and mean temperatures varying from 24° C to 29° C. Bumala soils are moderately deep, generally rocky and stony consisting of well drained red clays of low fertility. The Orthic ferralsols is predominant in this area with pH ranging from 4.7 to 5.0 and Al content of of 43.5% (McKnight report, 2004). At Amagoro site, an average pH of 6.5 prevails and the Orthic acrisols and ferralsols soils types dominate (McKnight report, 2004).

2.2 Planting, Data Collection and Analysis

Ninety eight sorghum genotypes collected from various parts of Tanzania by ICRISAT (Appendix 1) were sown out in a randomized block design with three replications in 5 meters row length with inter-row spacing of 60 cm. A basal fertilizer application to supply 20 kg ha-1 (N/ha), and 20 kg ha-1 (P/ha) was given at sowing in all blocks. Thinning was done two weeks after emergence to 2 plants per hole. Three weeks after emergence, an additional 45 kg ha-1 N, in form of urea, was top-dressed and other agronomic practices including weeding and disease control was followed as per requirements. Phenotypic characterization was done using the sorghum descriptors, from International Plant Genetic Resource Institute (IPGRI, 1993). Scoring of phenotypic characters was done on ten plants that were randomly selected and tagged just before flowering. Data were recorded for days to 50% flowering, number of leaves per plant, leaf length, leaf width, number of tillers per plant, plant height, panicle length, panicle width and grain yield per panicle and 1000 seed weight. Statistical analyses were done on the quantitative morphological characters using GenStat 2003 software. Moreover, analysis of frequency was performed for the qualitative traits using the Pivot table Analysis method. Differences were accepted as significant at p≤0.05. Cluster analysis, based on Euclidean distances as similarity measures and the Unweighted Pair-Group Method with Arithmetic Averages (UPGMA), was used to determine the contribution of the differences to the discrimination of the genotypes. Principal Component Analysis was used to determine the traits that contributed significantly to the discrimination of the genotypes.

3. Results

There was significant ($p \le 0.05$) phenotypic variations among sorghum genotypes for leaves per plant (LV), Leaf length (LL), Leaf width (LW), number of tillers per plant (TL), plant height (HT), days to 50% flowering (DAF), panicle shape (PS), panicle length (PL), panicle width (PW), grain yield per panicle (YP) and 1000 seed weight (TSW) for the genotypes evaluated (Table 1).

Table 1. Analysis of Variance for Phenotypic Characters in Sorghum										
Source of variation	DF	Leaves Per plant	Leaf length	Leaf (cm)	width	Tillers pe plant	r Plant height (cm)	Days to 50% flowering		
Genotype	97	6.4**	8.8**	131.9*		3.4**	8.8**	8448.6**		
Location	1	3.9	0.1*	287.3		0.1	0.1*	4534.6		
Error	30	1.6	7.2	82.4		1.1	7.2	1904.4		

Table 1. Analysis of Variance for Phenotypic Characters in Sorghum

Table 1. Continued

Source variation	of	DF	Panicle shape	Panicle len (cm)	gth Panicle (cm)	width Yield panicle(g)	per	1000 seed weight (g)
Genotype		97	0.9**	90.1**	316.7**	2.1**		741.3**
Location		1	0.1	21.9**	254.9	0.4**		64.3**
Error		30	0.1	13.4	48.8	0.5		117.2

Note: *, ** significant at 5% and 1% probability level respectively

The genotypes showed phenotypic variations across locations in different magnitudes as indicated in Table 2. There was variation although statistically not different in, LV, LW, DAF, TL, PW and TSW between the locations. For instance the number of leaves per plant was 11 across both locations while the leaf width was relatively higher but not significant about 9 cm at Bumala than at Amagoro that was about 8 cm. The average panicle length was 28.7cm at Bumala and 20.3cm at Amagoro. The number of tillers per plant was about 3 in both locations. The sorghum genotypes at Bumala had an average of 72 days while that at Amagoro had 70 days to attain 50% flowering. The average yield per panicle at Bumala was 97.3g while it was 61.3g at Amagoro. Table 2. Means for agronomic traits of 31 sorghum genotypes from two locations

A gran amia trait	Location		Overall
Agronomic trait	Bumala	Amagoro	Mean \pm S.E
Days to 50% flowering	72.0a	70.0a	71.0 ± 0.2
Leaves per plant	11.0a	11.3a	12.1 ± 0.6
Leaf lenght (cm)	81.8a	78.3b	80.1 ± 2.5
Leaf width (cm)	8.5a	8.4a	8.4 ± 0.3
Tillers per plant	3.2a	2.8a	3.1 ± 0.5
Panicle lenght (cm)	28.7a	20.3b	24.4 ± 2.6
Panicle width (cm)	4.9a	3.2a	4.1 ± 0.5
Plant height (cm)	213.9a	202.7b	208.3 ± 3.7
Yield per plant (g)	98.6a	86.3b	92.4 ± 0.7
1000 seed weight (g)	26.0a	24.2a	25.1 ± 1.2

Means in a row sharing the same letter are not significantly different at p < 0.05

The yield and yield traits performance of some genotypes is presented in Table 3. Plant height recorded significant variations but most genotypes were tall with the shortest being MCSR T53 (81.6 cm) while MCSR T80 was the tallest and attained 434.6 cm. The panicle length varied significantly and the highest value (43.8 cm) was expressed in MCSR T25. Concerning a thousand seed weight, MCSR T90 gave the largest (55.2g). The genotype, MCSR T10 expressed the lowest grain weight per panicle (10.3g) while MCSR T71 had the highest (114.6g).

Table 3. Means for phenotypic characteristics of best 33 sorghum genotypes for yield evaluated at Bumala and Amagoro in 2009/10 Seasons

Anagoro III	Leaves	Leaf	Leaf	Tillers pe	er Panicle	Panicle	Plant	Yield/	Thousand		to
Genotype	per plar	ntlength	width	plant	length	width	Height (cn	n) panicle	seed weig		
		(cm)	(cm)		(cm)	(cm)		(g)	(g)	flowerin	g
MCSR T6	12.2 ^a	73.12jkl	10.78	1.8 ^{a-f}	26.06e-k	6.2i-n	290.2wx	10.83a	29.64jk	4b	
MCSR T10	11.3 ^a	71.43jkl	11.43	1.7 ^{a-f}	25.57e-k	5.66i-n	288.4wx	10.74a	29.80jk	4b	
MCSR T16	12.8 ^a	96.86v	9.0s	2a-g	31.38j-l	4.8b-j	301.6x	35.84b-o	38.291mn	3a	
MCSR T25	10.5 ^a	91.41uv	8.33q-u	3.7g-n	43.81	5.6f-m	336.2m	23.27a-h	41.78op	5abc	
MCSR T35	10.0 ^{.a}	82.8r-t	6.26g-i	1a	35.92j-l	6.8k-o	238.3np	33.03a-o	25.02c-h	3a	
MCSR T28	11.0 ^a	57.88b-e		1.8a-f	34.62uv	4.8b-j	118.6b-e	28.27a-l	31.31k	3a	
MCSR T29	11.0 ^{.a}	86.8r-t	6.3g-i	1a	35.88j-l	6.76k-o	236.5np	32.96a-o	24.90c-h	3a	
MCSR T30	12.8 ^a	80.0r-t	8.03m-r	3.8h-o	28.23h-k	4.4a-i	254.54u	18.09a-e	23.06cd	4b	
MCSR T34	12.7 ^a	79.14r-t	9.34st	2.1a-h	26.52e-j	5.7g-m	240.0np	44.54g-q	37.96lm	5bc	
MCSR T49	12.1 ^a	86 r-t	8.95r	8.1r	27.59g-i	4.8b-j	252.0t	18.96a-f	37.89lm	4ab	
MCSR T51	10.0	70.53h-q	8.03m-r	1a	34.83v	5.2c-l	115.6b-e	52.01-r	37.89lm	3a	
MCSR T52	10.0 ^a	73.74 h-q		1a	22.68а-о	5.2c-l	106.8а-е	49.34i-q	65.39v-w	3a	
MCSR T53	10.4 ^a	69.16g-o		1a	30.36i-k	4.6a-j	81.6b	49.38i-q	58.13v	3a	
MCSR T54	10.2 ^a	70.76h-r		1a	29.42i-k	5.0c-k	92a-d	50.16j-q	60.53v-w	3a	
MCSR T59	11.4 ^a	67.81h-l		2.1a-h	20.08a-g	3.8a-f	181.2g-j	50.34j-q	53.61v	4ab	
MCSR T65	10.7 ^a	66.761h-l		2.2a-h	20.10a-g	3.7a-f	182.0g-j	49.86j-q	49.91v	4ab	
MCSR T71	10.0 ^a	74.761-u		1.5b-e	17.2abcd	3.5a-d	120.9b-e	114.62t	50.16v	3a	
MCSR T72	10.2 ^a	87.84 r-u		5.4op	33.02t	6.81 - q	273w	36.29b-o	58.84vw	4ab	
MCSR T74	12.2 ^a	76.58m	9.4st	3.4e-n	33.6t	8.00	261t	29.53a-n	54.26v	5abc	
MCSR T77	12.0 ^a	76.84 n	9.7tu	2.0b-g	36.96tu	4.6a-j	117.2b-e	30.63a-n	47.13st	3a	
MCSR T78	10.0 ^a	84.02r-t	5.8def	2.4b-l	34.14v	3.2ab	171.8fgh	21.18a-g	50.21v	5ab	
MCSR T80	10.6 ^a		5.1a-d	1.8b-f	16.9abc	4.0a-g	434.6i-u	27.11a-k	47.53s-v	5abc	
MCSR T79	11.4 ^a	85.92r-t	9.38st	3.0c-i	20.72a-i	5.0c-k	262.8w-	32.17a-n	58.47v	4ab	
MCSR T82	11.0 ^a	83.5r-t	9.09s	2.9c-i	32.08p-s	4.7a-j	231.4n	35.61a-o	57.61v	4ab	
MCSR T60	12.8 ^a	74.491-s	7.12i-l	2.6b-j	20.82a-i	3.4abc	266.0w	33.82а-о	54.91v	4ab	
MCSR T83	11.0 ^a	84.76r-t	8.54pq	2.8b-k	29.84k-r	5.8g-n	268.2w	36.55b-o	57.23v	4ab	
MCSR T90	10.8 ^a	89.85t	9.61 st	4.2j-o	34.59v	6.6k-l	218.5i-t	22.11a-h	45.49q-t	3a	
MCSR T93	11.3 ^a	86.38t-v	9.03s	2.0a-g	25.83d-t	5.6f-m	227.6k-	43.05d-o	51.83	3a	
MCSR T94	10.8 ^a	84.38p-t	9.5st	1.4b-e	26.23d-t	5.1c-l	146.5efg	43.2d-o	46.15r-t	3a	
MCSR T96	10.2 ^a	79.64k-l	8.45p-r	2,5b-j	25.14c-s	4.2a-h	200.3h-o	73.58rs	37.71m	3a	
MCSR T97	10.7 ^a	80.95k-n	8.54p-s	2.6b-j	25.98e-v	4.8a-j	141.6ef	57.26o-s	48.17s-v	3a	
MCSR T106	11.8 ^a	82.11	8.88r-s	1.8b-f	15.42a	5.2c-l	192.4h-l	25.93а-ј	18.25a	4ab	
MCSR T107	10.1 ^a	79.43kl	8.33q-u	1.1ab	29.72j-r	5.3d-m	227.1k	41.56d-o	43.41o-s	3a	
Means	11.2	79.2	8.4	3.1	28.8	5.0	212.9	35.9	45.2		
SE	0.5	0.2	0.1	0.1	0.2	0.1	1.3	0.7	0.2		

Means followed by the same letter in a column are not significantly different at 5% level of significant;

Days to 50% flowering: very early (< 56 days) =1, early (56-65 days) =2, medium=3 (66 – 75 days), late =4 (75 – 85 days), very late =5 (> 85 days)

The evaluated sorghum genotypes exhibited different panicle shapes as shown in Table 4 and Figure 1. A total of

46 genotypes had loose drooping primary branch panicles; 20 had semi loose primary branches while 12 and 10 genotypes, respectively, had half broomcorn and very lax panicles respectively. Grain characteristics indicated that most genotypes were brown (60.2%), creamy white seeded (34.1%) but a few were red (3.4%) and black (2.2%) seeded. It was interesting to note that all sorghum germplasm evaluated had single grain form (Figure 2). Table 4. Frequency distribution of qualitative traits in sorghum evaluated at Bumala and Amagoro during 2009 and 2010 seasons

Qualitative trait considered	Genotypes out of 88 genotypes survived	Frequency (%)	
Panicle shape	0 11		
Half broom corn	12	13.6	
Semi loose drooping primary branches	20	22.7	
Loose drooping primary branches	46	52.2	
Very lax panicle	10	11.4	
Grain colour			
Brown	53	60.2	
Creamy white	30	34.1	
Black	2	2.2	
Red	3	3.4	
Grain form			
Single	88	100.0	
Twin	0	0.0	
Grain plumpness			
Plump	83	94.3	
Dimple	5	5.7	
Awns at maturity			
Present	2	2.3	
Absent	86	97.7	
Leaf color pigmentation			
Pigmented	3	3.4	
Non-pigmented	85	96.6	

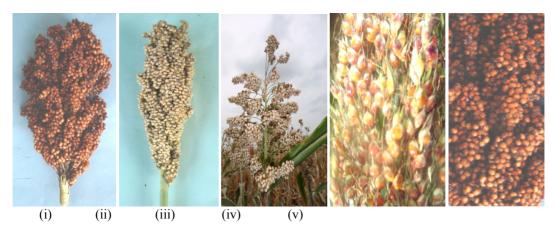
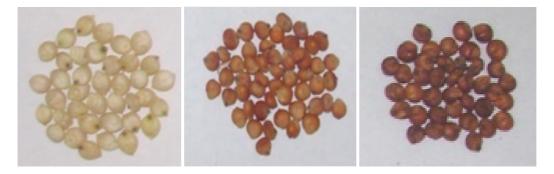



Figure 1. Different panicle characteristics of evaluated sorghum (i) Semi compact elliptic shape (ii) compact elliptic (iii) loose and drooping (iv) Sorghum with awns (v) awnless sorghum

MCSR T4MCSR T72MCSR T57(Cream)(Brown)(Red)Figure 2. Variation in Seed Color and Shape for Some Tanzanian Sorghum

Only two genotypes, MCSRT 17 and MCSR T41 had awns at maturity while the remaining 86 genotypes were awnless. There was variation in grain plumpness whereas about 94% of the genotypes had plump grains while only 6% were dimpled. Regarding leaf color pigmentation, only three genotypes *viz* MCSR T34, MCSR T65 and MCSR T77 had purple coloration while the rest were not pigmented (Figure 3).

(a) pigmented (MCSRT57)

(b) non -pigmented(MCSR T4)

Figure 3. Genetic Variation on Sorghum Leaf Collar

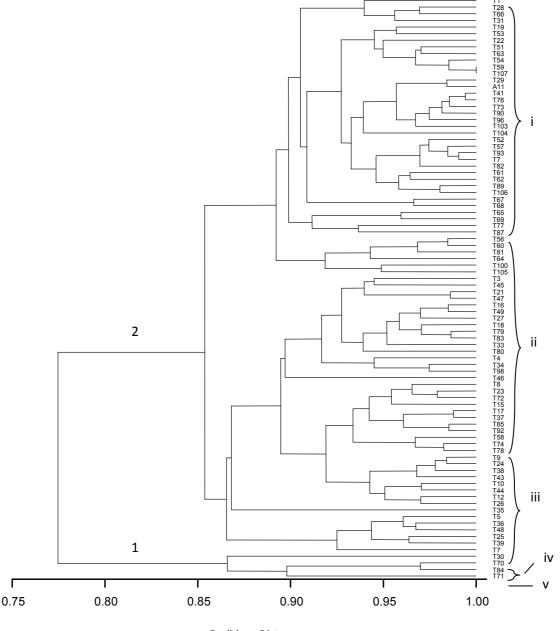

Some traits showed significant positive correlation with days to maturity that included leaf length ($r = 0.5^{**}$), plant height ($r = 0.3^{*}$) and number of leaves per main stem ($r = 0.3^{**}$) (table 5). Plant height showed moderate positive and significant correlation ($r = 0.4^{*}$) with number of leaves and very low but significantly correlated with yield ($r = 0.1^{*}$).

Table 5. Correlations among seven of	juantitative traits in 98 sorghum genotypes

	Days to 50% flowering	Leaf width (cm)	1000seed weight (g)	Plant height (cm)	Leave/ plant	Yield/ plant
Days to 50% flowering						
Leaf width (cm)	0.39**					
1000seed weight(g)	0.15	0.08				
Plant height (cm)	0.27*	0.22	0.03			
Leaves per stem	0.33**	0.58**	0.3	0.41*		
Yield/plant (g)	0.02	0.06	0.07	0.08*	0.13	
Leaf length (cm)	0.50**	0.19	0.16	0.31	-0.04	-0.1

Note: *, ** significant at 5% and 1% probability level respectively

Results from cluster analysis revealed two major distinct groups with five subgroups each (Figure 4). The first cluster (Cluster 1) was the largest and consisted of 37 landraces. This group is dominated by landraces that are very late maturing, taking more than 85 days to 50% flowering. Most of the genotypes in this group produced white grains. The next group (Cluster 2) composed of 33 genotypes characterized by late maturity time taking 76 - 85 days to 50% flowering. The third cluster comprised a total of 16 genotypes. This group of genotypes was similar in plant height, (150 - 220 cm) and high 1000 grain weight (36 - 45g/plant). Cluster 4 comprised of only MCSR T70 and MCSR T84. These two genotypes were white seeded with medium height. They were collected from the same region (Mwanza) so they could be similar in many ways since farmers share seed for planting. The last, cluster 5 had only one genotypes *viz* T59 and T107 shared the same tree on the dendrogram.

Euclidean Distance

Figure 4. Dendrogram Based on Average Linkage of Evaluated Sorghum Genotypes

4. Discussion

Phenotypic differences recorded in sorghum lines for the agronomic traits evaluated could be associated with the varied genetic materials used in this study. Significant variations in sorghum for yield and yield traits across environments have also been reported by Madhusudhara and Patil, 2013; Warkad *et al.* 2008; Bucheyeki, 2008). Moreover, the differences in grain yield and its associated traits between environments could be due to location's differences in rainfall during growing season. Bumala site received higher annual rainfall (835mm) than Amagoro (600mm) resulting to overall high grain yield. Majority of sorghum genotypes used in this study were early to medium maturing as they took 64 to 75 days to attain 50% flowering. However, most sorghum takes about 60 – 70 days to 50% flowering as reported by Doggett, (1988). The reason for the delayed flowering expressed by the genotypes in this study could be due to the fact that these materials were collected from various areas including lowlands and highlands agro-ecologies therefore varying maturity period. For the Bumala site and surrounding areas, late maturing sorghum varieties would be most suitable as they could mature relatively late when the rains have stopped because too much rain favors mold development hence affect seed quality, a major production constraint in areas receiving high rainfall. There was high tendency for tillering among the

evaluated sorghum genotypes with MCST 79 producing an average of 13 tillers per plant across locations. Similar observations have been report by Bucheyeki et al. (2008). Variation in tillering affects the dynamics of canopy development hence timing and nature of crop water limitation. Generally tillers may contribute to overall yield of a sorghum crop when water supply is not limiting as for the case of Bumala, but profuse tillering is not desirable for dry or sub-humid agroecologies because many tillers would reduce water use efficiency. Crop maturity, harvesting and grain quality may be adversely affected if the tillers mature at different times. Most of the sorghum lines had semi-loose drooping primary branches and loose-drooping primary branches which give wide scope for selection to meet farmer's preferences especially in the areas characterized with high rainfall. Such variations in panicle shape have being reported by Doggett (1988). Open panicles are preferred in high rainfall and humid areas to avoid mold and ergot diseases (Singh et al., 1997). Leaf collar pigmentation was rare trait as it was only noted in three genotypes and this feature can be a good phenotypic marker for breeders. Purple pigmentation on the leaves is closely associated with the seed colour and tannin content of the grains (Earp et al., 2004). In line with this, all pigmented genotypes had red seeded grains implying that pigmentation could be highly associated with grain colour. Accession MCSRT 53 which was dwarf could be used in breeding program for short cultivars. Shorter sorghums are preferred in dry lowlands as they require relatively shorter period to maturity compared to taller ones thus can escape terminal drought (Grenier et al., 2001). The shorter plant type also withstands lodging and is easier to harvest (Sing et al, (1997). Madhusudhara and Patil, (2013) reported wide variations of plant height in sorghum. Tall plants can easily lodge but they are beneficial in areas where more priority is for fodder, biomass fuel and thatching. The short sorghum varieties are mostly grown in dry areas of Central Tanzania as opposed to Southern and Northern part of the country where tall genotypes are common because these areas experience relatively longer period of rainfall.

Most of the sorghums in this study did not develop awns at maturity possibly because they are less preferred hence rarely grown by farmers in Tanzania. Awnless sorghum genotypes are more preferred because of relatively less effort during cleaning. The genotypes MCSR T17 and MCSR T41 that expressed awns should not be included in breeding program because of difficulties associated with threshing and cleaning the seed. Although, sorghum genotypes with awns are less eaten by birds this study found all awned genotypes to be low grain yielders across locations. The findings from this study indicated that majority of sorghum germplasm evaluated produced brown grains. The brown seeded sorghums are often associated with relatively high tannin content and are less preferred by birds (Doggett, 1988). Preference for brown sorghum may be associated with their localized use for brewing. Most of the brown seeded genotypes were collected from Lake Zone and Western Tanzania. Local brews made from sorghum are common in these areas. This concurs with the findings by (INTSORMIL/USAID, 2006). The variation observed on panicle width, length, yield per panicle, and 1000 seed weight could be explained by the fact that, the germplasm were collected from diverse geographical locations in Tanzania. Moreover, some of the materials might have originated from different neighboring countries in East and Central Africa and therefore distantly related to the native Tanzanian material therefore uncontrolled intercrossing might have occurred. The germplasm evaluated most likely represents the diverse races of S. bicolor grown in Tanzania. As such, one would expect a high level of phenotypic variation. Similar variations were reported by Bucheveki et al. (2008). The high yielding MCSRT 71 is a good genetic material that can be exploited in sorghum breeding program in Kenya and Tanzania for yield improvement.

Correlation analysis revealed that the leaf length, height and number of leaves were positive and significantly correlated with days to maturity. A reason for positive correlation relationships is due to the nature of sorghum collections used in this study. Sorghum landraces that are late maturing tend to accumulate more biomass in shoots and leaves, which leads to increased height and leaves. These results are similar with those reported by Empilli et al., (2000). Results on correlation of morphological traits with yield showed that, correlation coefficients were low. However, correlations among growth traits themselves were high. The positive correlation between plant height and yield is due to the fact that, the taller the plant grows the higher the yield it produces. However, this is not the case all the time, it can be the vice versa. These findings agree with those reported by Ejeta et al., (2000). This study recorded five clusters with one major cluster largely composed of genotypes from the Southern Tanzania and the next one was materials from Lake Zone. The genotypes from other regions such as Kagera, Kigoma and Mara were clustered together. The two genotypes sharing the same tree (MCSR T59 and MCSR T107) are most probably duplicates since they were collected from the same region. There is a high chance that some genotypes used in this study come from different races. For instance, kafir one of the five sorghum races is characterized by relatively compact panicles that are often cylindrical in shape, has elliptical sessile spikelets and tightly clasping glumes that are usually much shorter than the grain. This race is common across the eastern and southern Savannah from Tanzania to South Africa (Bucheyeki et al. (2008). It is possible that majority of genotypes collected from Southern Tanzania belong to this race due to the fact that they exhibited similar characters to kafir. Another race is bicolor that is characterized by open inflorescences and long clasping glumes that enclose the usually small grain at maturity. These cultivars are grown in Africa and Asia (Dogget, 1988) and majority of the genotypes from Lake and central zone had similar characteristics to this race.

Conclusion

Determination of genetic variability in traits of agronomic importance constitutes the foundation for sustainable management of genetic resources particularly sorghum. Such management is of central importance in breeding for improvement and conservation of genetic materials. This study confirmed that sorghum germplasm from Tanzania has a wide genetic variability that could be exploited in breeding programs. The high yielding and early maturing varieties identified in this research are potential resources to improve sorghum in Tanzania and western Kenya.

References

Abdulai, A., Parzies H., Kouressy M., Vaksmann, M., Asch F. and Brueck H. (2012), "Yield stability of photoperiod Sensitive sorghum (Sorghum bicolor L. Moench) Genotypes under Diverse Climatic Environments", *International Journal of Agricultural Research* 7 (1): 17-32

Amsalu A and Endashaw B, (2000), "Geographical patterns of morphological variation in sorghum (Sorghum bicolor (L.) Moench) germplasm from Ethiopia and Eritrea", Quantitative characters. *Euphytica* 115: 91-104

Bucheyeki, T.L., Gwanama, C., Mgonja, M., Chisi, M. and Folkertsma, R. (2008), "Morphological Characterization of Tanzanian Sorghum", *The Kasetsart Journal* 2008. Vol 42

Doggett H. (1988), "Sorghum" Second edition. New York, USA: John Wiley and Sons. 512

Earp, C.F., McDonough, C.M., Awika, J., Rooney, L.W., (2004). "Testa development in the caryopsis of Sorghum bicolor (L.) Moench", *Journal of Cereal Science* 39, 303–311.

Ejeta, G., Goldbrough P.B., Tuinstra M.R., Grote E.M., A.Menkir., Ibrahim Y., Cisse N., Weerasuriya., A. Melake-Berhan., and Shaner C.A. (2000). Molecular Marker Application in Sorghum. In: B.I.G. Haussmann, H.H. Geiger, D.E. Hess, C.T. Hash, and P. Bramel-Cox (eds).

Empilli, S., R. Castagna., and Brandolin, A. (2000). Morpho-agronomic Variability of the Diploid Wheat (Triticum monococcum L). *Plant Genetic Resources Newsletter* 124: 36-40

Genstat (2003), Release 4.2 Discovery Edition, Lawes Agricultural Trust, U.K

Grenier, C., Bramel-Cox P.J and Hamon P., (2001), "Core Collection of Sorghum": Stratification Based on Eco-Geographical Data. *Crop Science* 41: 234-240

House L.R, Verma B.N, Ejeta G, Rana BS, Kapran I, Obilana A.B and Reddy B.V.S. (1997). Developing countries breeding and potential of hybrid sorghum. Pages 84-96 in Proceedings of the International Conference on Genetic Improvement of Sorghum and Pearl Millet, Lubbock, Texas, USA, 22-27 Sep 1996. Lincoln, Nebraska, USA. Collaborative Research Support Program on Sorghum and Pearl millet 97-5.

IBPGR, (1993), "Descriptors for Sorghum [*Sorghum bicolar* (L) Moench]. International Board for Plant Genetic Resources, Rome, Italy; International Crop Research Institute for the Semi- Arid Tropics", Patancheru, India

International Sorghum and Millets Research/U.S Agency for International Development (INTSORMIL/USAID), (2006), "The Atlas of Sorghum Production in Five Countries of Eastern Africa", University of Nebraska, Lincoln.

Jaetzold, R and Schmidt H., (1983), "Farm management handbook of Kenya", Vol II/A West Kenya (Nyanza and Western Provinces), Kenya Government

Koenders, D. (2010), Feasibility study to include sorghum and meat into the WFP basket in Kenya. Report for the WFP, Kenya

Kolberg, H, (1999), "Morphological Variability in Sorghum (Sorghum bicolour (L.) Moench subsp. Bicolor) Genotypes from Namibia", *Plant Genetic Resources Newsletter*, 117: 51- 54

Madhusudhana R. and Patil J, (2013). A major QTL for plant height is linked with bloom locus in sorghum (Sorghum bicolor L. Moench). *Euphytica*. 191, Issue 2: 259-268

Rao, S.A., Mengesha M.H., Reddy V.G., and Rao K.E.P., (1998), "Collecting and Evaluation of Sorghum Germplasm from Rwanda", *Plant Genetic Resources Newsletter*, 114: 26-28

Rowhani P, David B, Marc L, Navin R., (2011). Climate variability and crop production in Tanzania. *Agricultural and Forest Meteorology* 151: 449–460

Sallu R., (2007), "Genotyping sorghum germplasm in Tanzania using microsattelite markers". *MSc. Thesis* Sokoine University of Agriculture, Morogoro Tanzania.

Sigh, F. Rai K.N., Reddy B.V., and Dawakar, B. (eds). (1997). Development of cultivars and seed production techniques in sorghum and pearl millet. Training manual. Training and Fellowship Program and Genetic Enhancement Division, ICRISAT Asia Centre, India. Patancheru 502 324, Andhra Praddesh, India: International Crops Research Institute for the Semi Arid Tropics. p 118.

The McKnight Foundation Collaborative Crop research Program, (2004), "New Approach for improving Phosphorus acquisition and Aluminium tolerance in marginal soils". Technical Report, Embrapa Maize and

Sorghum, Purdue University, Moi University, USDA and ARS U.S Plant Soil and Nutritional laboratory. Warkard, Y.N., Potdukhe, N.R., Dethe, A.M., Kahate, P.A. and Kotgire, R.R. (2008), "Genetic variability, heritability and genetic advance for quantitative traits in sorghum germplasm", *Agricultural Science Digest* 28: 165-169

Appendix 1	List of sorghum	genotypes used	in the study	with their origin
rippendin 1. i	Dist of Solghum	Senotypes used	m the study	with then onghi

No.	Accession	Origin	No.	Accession	Origin	No.	Accession	Origin
1	MCSRT1	Mbinga	34	MCSRT26	Sumbawanga	67	MCSRT52	Ilonga
2	MCSRT2	Mara	35	MCSRT27	Sumbawanga	68	MCSRT53	Ilonga
3	MCSRT3	Mara	36	MCSRT28	Sumbawanga	69	MCSRT54	Ilonga
4	MCSRT4	Mbinga	37	MCSRT29	Mwanza	70	MCSRT55	Ilonga
5	MCSRT5	Serengeti	38	MCSRT30	Ilonga	71	MCSRT56	Sumbawanga
6	MCSRT6	Ukerewe	39	MCSRT31	Nzega	72	MCSRT58	Biharamulo
7	MCSRT7	Mtwara	40	MCSRT32	Ilonga	73	MCSRT63	Tarime
8	MCSRT8	Mtwara	41	MCSRT33	Ukerewe	74	MCSRT61	Tarime
9	MCSRT9	Serengeti	42	MCSRT34	Mwanza	75	MCSRT69	Musoma rural
10	MCSRT10	Mtwara	43	MCSRT35	Igunga	76	MCSRT64	Ukerewe
11	MCSRT11	Igunga	44	MCSRT36	Lindi	77	MCSRT57	Serengeti
12	MCSRT12	Igunga	45	MCSRT37	Lindi	78	MCSRT74	Musoma rural
13	MCSRT13	Dodoma	46	MCSRT38	Nachingwea	79	MCSRT94	Igunga
14	MCSRT14	Dodoma	47	MCSRT39	Sumbawanga	80	MCSRT91	Igunga
15	MCSRT15	Dodoma	48	MCSRT40	Igunga	81	MCSRT105	Nzega
16	MCSRT16	S.Tanzania	49	MCSRT41	Ilonga	82	MCSRT78	Serengeti
17	MCSRT17	Nzega	50	MCSRT42	Musoma rural	83	MCSRT83	Serengeti
18	MCSRT18	Ilonga	51	MCSRT43	Igunga	84	MCSRT84	Ukerewe
19	MCSRT19	Kasulu	52	MCSRT44	Dodoma	85	MCSRT77	Biharamulo
20	MCSRT20	Ilonga	53	MCSRT45	Nachingwea	86	MCSRT75	Ukerewe
21	MCSRT21	Ukerewe	54	MCSRT46	Nzega	87	MCSRT81	Ukerewe
22	MCSRT22	S.Tanzania	55	MCSRT47	Musoma rural	88	MCSRT72	Musoma rural
23	MCSRT23	S.Tanzania	56	MCSRT48	Dodoma	89	MCSRT88	Ukerewe
24	MCSRT24	Kasulu	57	MCSRT49	Musoma rural	90	MCSRT68	Serengeti
25	MCSRT25	Kasulu	58	MCSRT51	Ilonga	91	MCSRT100	Igunga
26	MCSRT82	Tarime	59	MCSRT66	Bukoba rural	92	MCSRT99	Nachingwea
27	MCSRT80	Ukerewe	60	MCSRT65	Ukerewe	93	MCSRT101	Igunga
28	MCSRT85	Ukerewe	61	MCSRT70	Ukerewe	94	MCSRT97	Kasulu
29	MCSRT87	Biharamulo	62	MCSRT73	Mwanza	95	MCSRT89	S.Tanzania
30	MCSRT102	Igunga	63	MCSRT71	Bukoba rural	96	MCSRT90	S.Tanzania
31	MCSRT59	Biharamulo	64	MCSRT103	Nachingwea	97	MCSRT95	S.Tanzania
32	MCSRT67	Biharamulo	65	MCSRT60	Musoma rural	98	MCSRT98	Kasulu
33	MCSRT76	Ukerewe	66	MCSRT79	Sumbawanga			

The IISTE is a pioneer in the Open-Access hosting service and academic event management. The aim of the firm is Accelerating Global Knowledge Sharing.

More information about the firm can be found on the homepage: <u>http://www.iiste.org</u>

CALL FOR JOURNAL PAPERS

There are more than 30 peer-reviewed academic journals hosted under the hosting platform.

Prospective authors of journals can find the submission instruction on the following page: <u>http://www.iiste.org/journals/</u> All the journals articles are available online to the readers all over the world without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. Paper version of the journals is also available upon request of readers and authors.

MORE RESOURCES

Book publication information: <u>http://www.iiste.org/book/</u>

IISTE Knowledge Sharing Partners

EBSCO, Index Copernicus, Ulrich's Periodicals Directory, JournalTOCS, PKP Open Archives Harvester, Bielefeld Academic Search Engine, Elektronische Zeitschriftenbibliothek EZB, Open J-Gate, OCLC WorldCat, Universe Digtial Library, NewJour, Google Scholar

